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Abstract

A 3D non-isotropic algebraic stress/flux turbulence model is employed to simulate turbulent buoyant helicoidal flow

and heat transfer in a rectangular curved open channel. The prediction shows that, unlike the isothermal flow, there are

two major and one minor secondary flow eddies in a cross section of thermally stratified turbulent buoyant helicoidal

flow in a curved open channel. The results compare favorably with available experimental data. The thermocline in a

curved channel is thicker than that in a straight channel. All of these is the result of complex interaction between the

buoyant force, the centrifugal force and the Reynolds stresses. The turbulent flow in a curved channel is obviously non-

isotropic: the turbulence fluctuations in vertical and radial directions are lower in magnitude than that in the axial

direction, which illustrates the suppression of turbulence due to buoyant and centrifugal forces. The results are of

significant practical value to engineering works such as the choice of sites for intake and pollutant-discharge structures

in a curved river.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The disposal of waste heat into natural watercourses

from industrial and power generation processes poses an

increasing threat to the world�s fresh water resources. It
is important, on the part of environmental hydraulic

engineers, to understand the hydrodynamics of the flow

and heat transport in curved channels in order to be able

to assess the impact caused by thermal pollution on a

natural stream. Turbulent buoyant helicoidal flow in a

curved channel can be considered as one of the most

complex fluid-flow situations encountered in the envi-

ronment owing to the fact that the flow is turbulent and

strongly three dimensional. There are marked secondary

motions in cross sections normal to the streamwise di-

rection. Induced by complex interactions between the

buoyant force, the centrifugal force and the Reynolds

stresses, the secondary motions can be organized to

emerge in the form of three-dimensional helicoidal flow

that may in return modify the characteristics of the

primary flow, sediment transport and heat transfer in

the channel. In particular, these secondary motions can

significantly enhance the rate of lateral spreading of

substances released to the channel. Knowledge of the

hydrodynamic and heat transport processes in curved

open-channel flow is of significant practical value, for

such knowledge is required for the design of preventive

measures against silting and for the choice of sites for

intake and pollutant-discharge structures in a river.

Despite the practical importance, the understanding of

the hydrodynamics of turbulent buoyant helicoidal flow

and heat transfer has been very limited.

In the past two decades, various 3D numerical

models have been used to simulate curved channel flow,

which include notably the works by Leschziner and

Rodi [1], De Vriend [2], Galmes and Lakshminarayana

[3], Demuren and Rodi [4], Shimizu et al. [5], Demuren

[6], Sinha et al. [7], Ye and McCorquodale [8], Wu et al.
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[9], and many others. Until recently, the 3D numerical

modeling of curved channel flow has mostly been con-

fined to isothermal non-buoyant flow simulations. It is

well known that for isothermal flow in a curved channel

the major secondary flow is caused by the centrifugal

force. In addition, a minor secondary eddy is induced by

the normal stress gradient, which can only be realisti-

cally accounted for with a 3D non-isotropic turbulent

flow model [10–12]. On the other hand, there does not

seem to exist any numerical studies on the non-isother-

mal turbulent buoyant helicoidal flow in a curved

channel. Only some limited experimental investiga-

tions have been performed on this kind of flow [13].

Owing to the added effects due to buoyancy, the sec-

ondary motions for non-isothermal turbulent flows

can differ in pattern dramatically from those for iso-

thermal flows. The non-isothermal turbulence structure

is generally highly non-isotropic and non-homogeneous.

The commonly used turbulence models that are based

on an isotropic eddy viscosity assumption will be defi-

cient when applied to turbulent buoyant helicoidal flows

[14–16].

In this paper, an efficient modified non-isotropic al-

gebraic stress/flux turbulence model with the proper

consideration of stress convection is presented. The

model can allow for more physics to be taken into ac-

count than the conventional k–e models in terms of
pressure-strain interaction (redistribution of stresses)

and turbulence/body force (buoyancy, centrifugal force,

etc.) interactions. The model is used to simulate non-

isotropic turbulent buoyant helicoidal flow in a 180�
open channel bend. The results are compared with

some available data that have been published previ-

ously [13].

2. Mathematical model

It is important to recognize that turbulent motion is

essentially stochastic and chaotic [17]. In order to pre-

dict the gross or average behavior of turbulent buoyant

helicoidal flow, a mathematical model must be estab-

lished. The basic foundation for modeling of turbulent

flow is Navier–Stokes equations. Based on the instan-

Nomenclature

B channel width

c�s empirical constants in turbulence model

g gravitational acceleration

h thickness

H water depth

k turbulent kinetic energy

Ka von Karman�s constant in log-law (about

0.4)

L length

P mean pressure

Q discharge

r radial coordinate

rc radius of curvature of curved channel center

ri radius of curvature of inner bank (convex

bank)

ro radius of curvature of outer bank (concave

bank)

t time

T mean temperature

T � dimensionless mean temperature

V0 characteristic velocity (bulk velocity through

the inlet)

vr, vu, vz fluctuating velocity components in r, u and
z directions, respectively

Vr, Vu, Vz mean velocity components in r, u and z
directions, respectively

V �
r , V

�
u , V

�
z dimensionless mean velocity components

in r, u and z directions, respectively

z vertical coordinate

Greek symbols

b volumetric expansion coefficient

e turbulent kinetic energy dissipation rate

h fluctuating temperature

q fluid density

u angular polar coordinate

Superscript

bar time-averaged quantity

Subscripts

1 upper warmer-water at the entrance of the

straight inlet reach

2 lower cooler-water at the entrance of the

straight inlet reach

c curved channel center

i inner bank (convex bank)

in straight inlet reach

o outer bank (concave bank)

out straight outlet reach

r radial direction

s water surface

z vertical direction

u tangential direction
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taneous equations for conservation of mass, momentum

and thermal energy, a statistical approach is taken here.

We start out by defining a turbulent quantity to be the

sum of the mean value of the quantity and its fluctu-

ating part. Taking ensemble average of the instanta-

neous equations, we get the time-averaged governing

equations for 3D non-isotropic turbulent buoyant he-

licoidal flows and heat transfer. The modified alge-

braic stress/flux turbulence model is employed for the

closure of modeling the Reynolds stresses and fluxes in

the time-averaged governing equations. On simplifying

the Reynolds stress transport equations into algebraic

expressions, the non-gradient convection terms is re-

tained in the present model since they may be com-

parable to the gradient convection terms [18]. Thus,

the governing equations for non-isotropic turbulent

buoyant helicoidal flows and heat transfer may be

written in terms of cylindrical polar coordinates ðr;u; zÞ
as follows:
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and stress and heat flux algebraic expressions, such as
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Similar expressions can be given for vrvr, vuvu, vzvz, vrvu,

vuvz, vuh and vrh. In the equations presented above, the
symbols have the following meanings: an overbar de-

notes time averaging; subscripts r, u and z are the radial,
tangential and vertical directions, respectively; t time; Vr,
Vu and Vz are mean velocity components in r, u and z
directions, respectively; vr, vu and vz are fluctuating ve-
locity components in r, u and z directions, respectively;
P is mean pressure; q is fluid density; g is gravitational
acceleration; b is volumetric expansion coefficient; T is
mean temperature; h is fluctuating temperature; k is
turbulent kinetic energy; e is turbulent kinetic energy
dissipation rate; c1, c2, c3, ck , ce, ce1, ce2, ce3, cT 1, cT2, cT3
and ch1 are all empirical constants whose values have

been given in the literature [10,17].

3. Numerical computation and physical discussions

3.1. The problem

The mathematical model described above is applied

to turbulent buoyant helicoidal flow in a 180� open
channel bend as shown in Fig. 1, for which the experi-

mental data presented in He et al. [13] can be used for

comparison. This flow configuration is a suitable test

case for the present model because it can reveal many of

the basic features such as stratification and secondary

motions resulting from the interactions between the

buoyant force, the centrifugal force and the Reynolds

stresses. The geometry consists of a U-shaped smooth

channel of rectangular cross section with 0.4 m in width

and 0.6 m in height. The channel is made up of a 180�
bend with two straight inlet and outlet reaches of the

same cross section before and after the bend. The geo-

metrical parameters of the computed domain are:

the channel width B ¼ 0:40 m; the total water depth
H ¼ 0:29 m; the radius of curvature of the centerline of
the bend rc ¼ 1:3 m; the radius of curvature of the inner
bank (convex bank) ri ¼ 1:1 m; the radius of curvature
of the outer bank (concave bank) ro ¼ 1:5 m; the length
of the inlet reach Lin ¼ 4:0 m; the length of the outlet
reach Lout ¼ 3:4 m.
A thermally stratified flow is created by joining two

streams of water, which are initially separated by a

splitter plate, and have different velocities and temper-

atures before mixing. The streams are discharged from

the upper and lower inlets into the channel. The upper

water is warmer than the lower one so that the denser

stream is below the lighter one and the thermal stratifi-

cation is stable. At the entrance the total water depth is

0.29 m, in which the upper depth is 0.02 m and the lower

depth is 0.27 m. Throughout the experiments, some

special measures were taken in order to keep all the

parameters constant. The experimental data obtained by

He et al. [13] is adopted here in order to test the accuracy

of the model. The experimental conditions are listed in

Table 1. The meanings of the parameters in Table 1 are:

h1 and h2 are the thicknesses of the upper warmer-water
and the lower cooler-water at the entrance of the straight

inlet reach, respectively; Q1 and Q2 are the discharges of
the upper warmer-water and the lower cooler-water at

the entrance of the straight inlet reach, respectively; T1
and T2 are the temperatures of the upper warmer-water
and the lower cooler-water at the entrance of the straight

inlet reach, respectively; q1 and q2 are the densities of the
upper warmer-water and the lower cooler-water at the

entrance of the straight inlet reach, respectively.

3.2. Boundary conditions

As shown in Fig. 1, there are four types of bound-

aries to be considered for the solution domain, namely

inlet, outlet, walls and the free surface. Boundary con-

ditions are in general required for all dependent vari-

ables at all boundaries of the solution domain. In the

Table 1

Experimental conditions

The parameters for upper warmer-water The parameters for lower cooler-water

h1 (m) Q1 (cm3/s) T1 (�C) q1 (kg/m
3) h2 (m) Q2 (cm3/s) T2 (�C ) q2 (kg/m

3)

0.02 750 32 995.05 0.27 4890 22 997.80

Fig. 1. Flow configuration and coordinate system.
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present case, however, boundary conditions for Vr, Vu,

Vz, k and e are not required at the outflow plane because
the related equations are partially parabolic. At the

boundary of inlet, the velocity is calculated by the em-

pirical formula under a certain discharge. Turbulence

variables are determined according to the distribution of

velocity. Temperature and density are given according

to the experimental data. The free surface is treated as a

slip plane (rigid-lid approximation) and the symmetry

condition is adopted. Because of the bounds imposed

by the free surface, the turbulent kinetic energy dissi-

pation rate es is determined by the empirical relation:
es ¼ C3=4l k3=2s =ð0:07KaHÞ, where Ka ¼ 0:4 is von Kar-

man�s constant; ks is the turbulent kinetic energy at the
free surface; H is water depth. On the channel wall, the

no-slip boundary condition is used. The heat and mass

transfer through the walls is negligible, in which case a

zero normal gradient is the proper wall boundary con-

dition. For the grid nodes immediately adjacent to the

wall boundary, the viscous sublayer is treated by the

wall function approximation. At the boundary of outlet,

boundary conditions are only required for the pressure

since the related equations are partially parabolic.

3.3. Results and discussions

In the present work, a finite control volume proce-

dure [19] is adopted. In this procedure, a non-uniform

grid is set up in the computational region. Denser grids

are employed in the region where the variation of flow

variables is more rapid. The discrete governing equa-

tions are obtained by integrating the original differential

equations over the control volume. This integration is

equivalent to considering a balance for the individual

variables over the control volume. Because the equations

are non-linear and coupled with each other, the solution

is obtained by using the SIMPLE algorithm with itera-

tion and under-relaxation. The numerical model de-

scribed above is employed to simulate 3D non-isotropic

turbulent buoyant helicoidal flows and heat transfer in a

180� open channel bend.
Figs. 2–7 show the computed results and the corre-

sponding experimental results at the cross section 90� in
the channel. To facilitate comparison, the following

dimensionless variables are introduced:

V �
r ¼ Vr=V0; V �

z ¼ Vz=V0; V �
u ¼ Vu=V0;

T � ¼ ðT � T2Þ=ðT1 � T2Þ

where V0 is the characteristic velocity (bulk velocity
through the inlet), V �

r , V
�
u and V �

z are the dimensionless

components of mean velocity in r, u and z directions
respectively, T � is the dimensionless mean temperature.

It can be seen from Figs. 2–5 that the primary

streamwise flow is accompanied with strong secondary

motions. There are two secondary eddies of comparable
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size, which rotate in opposite directions. This is in sharp

contrast to isothermal flow in which the secondary

motions consist of only one major eddy and a minor

eddy, rotating in opposite directions. The buoyancy ef-

fect causes a thermocline that acts as a barrier separating

the cooler-water below from mixing with the warmer

water above. At the same time, the eddy on the interface

stirs up a second eddy in the upper warmer-water region.

The boundary between these two eddies is situated right

in the thermocline. It can be observed from Fig. 2 that

the maximum velocities are located near the concave

bank in the warmer-water region and the minimum

ones near the convex bank in cooler-water region. The

streamwise velocity contours near the bottom and

the concave bank are crowded and almost parallel to the

wall. The warmer layer is thicker near the concave bank

than near the convex bank owing to a higher tangential

velocity or larger centrifugal force in the warmer-water

layer. On the other hand, the convection and mixing due

to secondary flows makes the thermocline thicker in a

curved channel than that in a straight channel. Obvi-

ously, the turbulence is non-isotropic not only near the

wall and free surface, but also in the thermocline. In

these regions, the vertical and radial turbulence intensity

is smaller than tangential turbulence intensity. This is

the effect of turbulence suppression due to buoyancy and

centrifugal forces, which is in good agreement with the

experiments [13]. Comparison of Figs. 2–4 with Figs. 6

and 7 show that the present results can reflect the actual

flow pattern with good accuracy. There is some quan-

titative discrepancy between the calculations and ex-

periments, which can be ascribed to the inaccuracy of

laser Doppler measurements in low-velocity regions.

The turbulence model of course also needs further im-

provement on, for examples, the stress/flux modeling,

and the numerical diffusion.

4. Conclusions

(a) A modified algebraic stress/flux turbulence model

has been applied to the problem of non-isotropic

turbulent buoyant helicoidal flow and heat transfer

in a curved open channel that is preceded and fol-

lowed by straight reaches. The calculated results

are found in good agreement with available experi-

mental data. The model takes into account the

non-isotropic stresses due to buoyant forces and

centrifugal forces or interaction between the buoy-

ant force, the centrifugal force and the Reynolds

stresses.

(b) The numerical results reveal that two comparable

eddies rotating in opposite directions are formed in

cross sections of the turbulent buoyant helicoi-

dal flow in a curved open channel. The boundary
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Fig. 5. Calculated temperature contours at cross section 90� in
180� open channel bend.
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between the two eddies is located right in the ther-

mocline. The flow is obviously different from the

case for isothermal flow, which has only one major

eddy due to the centrifugal effect and a minor one

due to the normal stress gradient.

(c) The secondary flow leads to a thicker thermocline of

the flow in a curved channel than that in a straight

channel and a deeper warmer-water layer near the

concave bank than near the convex bank.

(d) The turbulence in buoyant flow in a curved channel

is markedly non-isotropic: the turbulence intensity is

smaller in the vertical and radial directions than the

tangential direction due to turbulence suppression

by buoyancy and centrifugal forces. The flow and

heat transfer in a curved channel are dramatically

different from those in a straight channel. These re-

sults are of significant practical value to the design

of engineering works, such as in choosing locations

for intake and pollutant-discharge structures in a

natural river.
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